
Multi-core Performance Analysis

HPC Computation

1

Performance Analysis

• Compiler Feedback

• HWPC Data

• Load Balance

2

Compiler Feedback

• Before optimizing code, it’s critical to know what the
compiler does to your code
– Loop optimizations
– Vectorization
– Prefetching
– …

• Equally important to what the compiler does is what it
doesn’t do, and why
– Data dependencies
– Misplaced branches
– Unknown loop counts
– …

3

Enabling Compiler Feedback

• Portland Group
– Minfo=all

– Mneginfo

– Minfo=ccff (Common Compiler Feedback Format)

• Cray
– rm (Fortran)
– hlist=m (C/C++)

• Intel
– vec-report1

• Pathscale
– LNO:simd_verbose=ON:vintr_verbose=ON:prefetch_v
erbose=ON

• GNU
– ftree-vectorizer-verbose=1

4

Compiler Feedback Examples: PGI

! Matrix Multiply

do k = 1, N

 do j = 1, N

 do i = 1, N

 c(i,j) = c(i,j) + &

 a(i,k)*b(k,j)

 end do

 end do

end do

mm:

 18, Loop interchange

produces reordered loop

nest: 19,18,20

 20, Generated 3

alternate loops for the

loop

 Generated vector

sse code for the loop

 Generated 2

prefetch instructions

for the loop

Slide 5

PGI CCFF Usage
ftn -fast -Minfo=all,ccff -Mneginfo -Mprof=ccff

mm.F90

pgcollect ./a.out

pgprof ./a.out

6

CCFF in PGProf

7

CCFF in PGProf (cont.)

8

18. ib------------< do k = 1, N

19. ib ibr4-------< do j = 1, N

20. ib ibr4 Vbr4--< do i = 1, N

21. ib ibr4 Vbr4 c(i,j) = c(i,j) + &

22. ib ibr4 Vbr4 a(i,k) * b(k,j)

23. ib ibr4 Vbr4--> end do

24. ib ibr4-------> end do

25. ib------------> end do

ftn-6007 ftn: SCALAR File = mm.F90, Line = 18

 A loop starting at line 18 was interchanged with the loop starting at line 19.

ftn-6254 ftn: VECTOR File = mm.F90, Line = 18

 A loop starting at line 18 was not vectorized because a recurrence was found on "C" at line
21.

ftn-6049 ftn: SCALAR File = mm.F90, Line = 18

 A loop starting at line 18 was blocked with block size 32.

ftn-6294 ftn: VECTOR File = mm.F90, Line = 19

 A loop starting at line 19 was not vectorized because a better candidate was found at line
20.

ftn-6049 ftn: SCALAR File = mm.F90, Line = 19

 A loop starting at line 19 was blocked with block size 8.

ftn-6005 ftn: SCALAR File = mm.F90, Line = 19

 A loop starting at line 19 was unrolled 4 times.

ftn-6049 ftn: SCALAR File = mm.F90, Line = 20

 A loop starting at line 20 was blocked with block size 256.

ftn-6005 ftn: SCALAR File = mm.F90, Line = 20

 A loop starting at line 20 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = mm.F90, Line = 20

 A loop starting at line 20 was vectorized.

Compiler Feedback Examples: Cray

Slide 9

i – interchanged

b – blocked

r – unrolled

V - Vectorized

(mm.F90:20) Vectorization is not likely to be beneficial (try -
LNO:simd=2 to vectorize it). Loop was not vectorized.

(mm.F90:20) Vectorization is not likely to be beneficial (try -
LNO:simd=2 to vectorize it). Loop was not vectorized.

(mm.F90:20) Vectorization is not likely to be beneficial (try -
LNO:simd=2 to vectorize it). Loop was not vectorized.

(mm.F90:20) Vectorization is not likely to be beneficial (try -
LNO:simd=2 to vectorize it). Loop was not vectorized.

(mm.F90:19) Generated 40 prefetch instructions for this loop

=== After adding -LNO:simd=2 ===

(mm.F90:20) Loop has too many loop invariants. Loop was not
vectorized.

(mm.F90:20) LOOP WAS VECTORIZED.

(mm.F90:20) LOOP WAS VECTORIZED.

(mm.F90:20) LOOP WAS VECTORIZED.

(mm.F90:19) Generated 52 prefetch instructions for this loop

Compiler Feedback Examples:
Pathscale

Slide 10

mm.F90(20): (col. 9) remark: LOOP WAS VECTORIZED.

mm.F90(20): (col. 9) remark: LOOP WAS VECTORIZED.

mm.F90(20): (col. 9) remark: LOOP WAS VECTORIZED.

Compiler Feedback Examples: Intel

Slide 11

mm.F90:20: note: LOOP VECTORIZED.

mm.F90:11: note: vectorized 1 loops in function.

Compiler Feedback Examples: GNU

Slide 12

Gathering Runtime Performance Data

• Performance data can be gathered in numerous ways with
a range of detail and intrusiveness
– Sampling - Snapshot of data collected periodically - very light

weight
– User timers - User inserts timers at logical places - slightly

heavier, very intrusive to code
– Code instrumentation - Tool inserts instrumentation

automatically into the code

• Degrees of detail
– Sampling - high level overview, low details
– Profiling - summation over time, more detailed
– Tracing - record of events over time, very detailed and expensive

13

CrayPAT Automatic Performance
Analysis (APA)

• CrayPAT provides a mechanism for guiding user
experiments, known as APA

• User first makes lightweight, sample-based run

• Data from initial run is used to suggest
appropriate parts of code for gathering more
detailed information

– Attempts to exclude routines that would add
overhead and focus on routines that are likely to be
important

14

Important Runtime Data

• Time spent in important routines, libraries,
and loop nests

• Hardware Performance Counters (HWPC)

• Load imbalance data

• Communication
– Time

– Routines

– Message sizes

• I/O Data

15

Sampling Output (Table 1)

Notes for table 1:

...

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group
 | | Samp | Samp % | Function
 | | | | PE='HIDE'

 100.0% | 775 | -- | -- |Total
|---
| 94.2% | 730 | -- | -- |USER
||--
|| 43.4% | 336 | 8.75 | 2.6% |mlwxyz_
|| 16.1% | 125 | 6.28 | 4.9% |half_
|| 8.0% | 62 | 6.25 | 9.5% |full_
|| 6.8% | 53 | 1.88 | 3.5% |artv_
|| 4.9% | 38 | 1.34 | 3.6% |bnd_
|| 3.6% | 28 | 2.00 | 6.9% |currenf_
|| 2.2% | 17 | 1.50 | 8.6% |bndsf_
|| 1.7% | 13 | 1.97 | 13.5% |model_
|| 1.4% | 11 | 1.53 | 12.2% |cfl_
|| 1.3% | 10 | 0.75 | 7.0% |currenh_
|| 1.0% | 8 | 5.28 | 41.9% |bndbo_
|| 1.0% | 8 | 8.28 | 53.4% |bndto_
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

16

Sampling Output (Table 2)
Table 2: Profile by Group, Function, and Line

 Samp % | Samp | Imb. | Imb. |Group
 | | Samp | Samp % | Function
 | | | | Source
 | | | | Line
 | | | | PE='HIDE'

 100.0% | 777 | -- | -- |Total
|---
| 94.2% | 732 | -- | -- |USER
||--
|| 43.4% | 337 | -- | -- |mlwxyz_
3| | | | | ldr/mhd3d/src/mlwxyz.f
||||--
4||| 2.1% | 16 | 1.47 | 8.9% |line.39
4||| 2.8% | 22 | 2.25 | 9.7% |line.78
. . .
4||| 1.3% | 10 | 1.72 | 14.8% |line.604
4||| 2.4% | 19 | 0.72 | 3.7% |line.634
||||==
||||==
|| 16.1% | 125 | -- | -- |half_
3| | | | | ldr/mhd3d/src/half.f
||||--
4||| 5.4% | 42 | 6.41 | 13.8% |line.28
4||| 10.7% | 83 | 5.91 | 6.9% |line.40
||||==
|| 8.0% | 62 | -- | -- |full_
3| | | | | ldr/mhd3d/src/full.f
||||--
4||| 8.0% | 62 | 6.31 | 9.6% |line.22
||||==
. . .
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
||||--
||||==
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

17

• adios Adaptable I/O System API
• armci Aggregate Remote Memory Copy
• blas Basic Linear Algebra subprograms
• caf Co-Array Fortran (Cray CCE compiler only)
• chapel Chapel language compile and runtime library API
• hdf5 manages extremely large and complex data collections
• heap dynamic heap
• io includes stdio and sysio groups
• lapack Linear Algebra Package
• math POSIX.1 math functions
• mpi MPI
• omp OpenMP API and runtime library API (CCE and PGI only)
• shmem SHMEM
• upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

18

CrayPAT Tracegroup (subset)

pat_report: Flat Profile

Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group

 | | | Time % | | Function

 | | | | | PE='HIDE'

 100.0% | 104.593634 | -- | -- | 22649 |Total

|--

| 71.0% | 74.230520 | -- | -- | 10473 |MPI

||---

|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce_

|| 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi_alltoall_

||===

| 25.3% | 26.514029 | -- | -- | 73 |USER

||---

|| 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity_

|| 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffte4_

||===

| 2.5% | 2.659429 | -- | -- | 435 |MPI_SYNC

||---

|| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi_barrier_(sync)

||===

| 1.1% | 1.188998 | -- | -- | 11608 |HEAP

||---

|| 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free

|==

19

pat_report: Message Stats by Caller

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function

 Bytes | Count | <16B | MsgSz | Caller

 | | Count | <64KB | PE[mmm]

 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total

|--

| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND

||---

|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9

4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15

||||===

|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5

||||===

. . .

20

Hardware Performance Counters

• All modern CPUs provide have some number of
performance counters used during chip
design/testing

• These counters can be read by the kernel and
tools such as PAPI, CrayPAT, and others to gather
runtime data about an application

• Because the CPUs have a limited number of
counters, it’s often necessary to make multiple
runs to gather all of the performance data of
interest

21

Types of Data

• Native Events
– Each processor has a large set of events that can be counted
– Names vary between architectures, manufacturers, and

processor families

• PAPI Counters
– PAPI has several counters, which map to native events so that

common metrics, such as FLOP counts can be measured in a
portable way

• Derived Metrics
– Raw counter data is difficult to interpret directly, derived

metrics are rates and ratios that allow easier interpretation of
data

– Example: FLOP Rate, Cache Hit/Miss Ratio, etc.

22

Gathering HWPC Data

• PAPI
– A portable API, developed at the University of

Tennessee for reading HWPC

– User must explicitly insert API calls to gather and
interpret the data

• Tools
– Most performance tools are able to gather HWPC

data with little to no code modification

– Generally able to display data in an
understandable manner

23

 PAPI_TLB_DM Data translation lookaside buffer misses

 PAPI_L1_DCA Level 1 data cache accesses

 PAPI_FP_OPS Floating point operations

 DC_MISS Data Cache Miss

 User_Cycles Virtual Cycles

==

USER

--

 Time% 98.3%

 Time 4.434402 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.001M/sec 4500.0 calls

 PAPI_L1_DCM 14.820M/sec 65712197 misses

 PAPI_TLB_DM 0.902M/sec 3998928 misses

 PAPI_L1_DCA 333.331M/sec 1477996162 refs

 PAPI_FP_OPS 445.571M/sec 1975672594 ops

 User time (approx) 4.434 secs 11971868993 cycles 100.0%Time

 Average Time per Call 0.000985 sec

 CrayPat Overhead : Time 0.1%

 HW FP Ops / User time 445.571M/sec 1975672594 ops 4.1%peak(DP)

 HW FP Ops / WCT 445.533M/sec

 Computational intensity 0.17 ops/cycle 1.34 ops/ref

 MFLOPS (aggregate) 1782.28M/sec

 TLB utilization 369.60 refs/miss 0.722 avg uses

 D1 cache hit,miss ratios 95.6% hits 4.4% misses

 D1 cache utilization (misses) 22.49 refs/miss 2.811 avg hits

==

PAT_RT_HWPC=1 (Summary with TLB)

24

PAT_RT_HWPC=1
 Flat profile data
Hard counts
 Derived metrics

PAT_RT_HWPC=2 (L1 and L2 Metrics)

25

==

USER

--

 Time% 98.3%

 Time 4.436808 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.001M/sec 4500.0 calls

 DATA_CACHE_REFILLS:

 L2_MODIFIED:L2_OWNED:

 L2_EXCLUSIVE:L2_SHARED 9.821M/sec 43567825 fills

 DATA_CACHE_REFILLS_FROM_SYSTEM:

 ALL 24.743M/sec 109771658 fills

 PAPI_L1_DCM 14.824M/sec 65765949 misses

 PAPI_L1_DCA 332.960M/sec 1477145402 refs

 User time (approx) 4.436 secs 11978286133 cycles 100.0%Time

 Average Time per Call 0.000986 sec

 CrayPat Overhead : Time 0.1%

 D1 cache hit,miss ratios 95.5% hits 4.5% misses

 D1 cache utilization (misses) 22.46 refs/miss 2.808 avg hits

 D1 cache utilization (refills) 9.63 refs/refill 1.204 avg uses

 D2 cache hit,miss ratio 28.4% hits 71.6% misses

 D1+D2 cache hit,miss ratio 96.8% hits 3.2% misses

 D1+D2 cache utilization 31.38 refs/miss 3.922 avg hits

 System to D1 refill 24.743M/sec 109771658 lines

 System to D1 bandwidth 1510.217MB/sec 7025386144 bytes

 D2 to D1 bandwidth 599.398MB/sec 2788340816 bytes

==

PAT_RT_HWPC=5 (Floating point mix)

26

==

USER

--

 Time% 98.4%

 Time 4.426552 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.001M/sec 4500.0 calls

 RETIRED_MMX_AND_FP_INSTRUCTIONS:

 PACKED_SSE_AND_SSE2 454.860M/sec 2013339518 instr

 PAPI_FML_INS 156.443M/sec 692459506 ops

 PAPI_FAD_INS 289.908M/sec 1283213088 ops

 PAPI_FDV_INS 7.418M/sec 32834786 ops

 User time (approx) 4.426 secs 11950955381 cycles 100.0%Time

 Average Time per Call 0.000984 sec

 CrayPat Overhead : Time 0.1%

 HW FP Ops / Cycles 0.17 ops/cycle

 HW FP Ops / User time 446.351M/sec 1975672594 ops 4.1%peak(DP)

 HW FP Ops / WCT 446.323M/sec

 FP Multiply / FP Ops 35.0%

 FP Add / FP Ops 65.0%

 MFLOPS (aggregate) 1785.40M/sec

==

PAT_RT_HWPC=12 (QC Vectorization)

27

==

USER

--

 Time% 98.3%

 Time 4.434163 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.001M/sec 4500.0 calls

 RETIRED_SSE_OPERATIONS:

 SINGLE_ADD_SUB_OPS:

 SINGLE_MUL_OPS 0 ops

 RETIRED_SSE_OPERATIONS:

 DOUBLE_ADD_SUB_OPS:

 DOUBLE_MUL_OPS 225.224M/sec 998097162 ops

 RETIRED_SSE_OPERATIONS:

 SINGLE_ADD_SUB_OPS:

 SINGLE_MUL_OPS:OP_TYPE 0 ops

 RETIRED_SSE_OPERATIONS:

 DOUBLE_ADD_SUB_OPS:

 DOUBLE_MUL_OPS:OP_TYPE 445.818M/sec 1975672594 ops

 User time (approx) 4.432 secs 11965243964 cycles 99.9%Time

 Average Time per Call 0.000985 sec

 CrayPat Overhead : Time 0.1%

==

Vectorization Example

28

==
USER / calc2_
--
 Time% 28.2%
 Time 0.600875 secs
 Imb.Time 0.069872 secs
 Imb.Time% 11.9%
 Calls 864.9 /sec 500.0 calls
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS 369.139M/sec 213408500 ops
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS:OP_TYPE 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS:OP_TYPE 369.139M/sec 213408500 ops
 User time (approx) 0.578 secs 1271875000 cycles 96.2%Time

When compiled with vectorization:
==
USER / calc2_
--
 Time% 24.3%
 Time 0.485654 secs
 Imb.Time 0.146551 secs
 Imb.Time% 26.4%
 Calls 0.001M/sec 500.0 calls
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS 208.641M/sec 103016531 ops
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS:OP_TYPE 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS:OP_TYPE 415.628M/sec 205216531 ops
 User time (approx) 0.494 secs 1135625000 cycles 100.0%Time

Derived Metrics: Computational
Intensity

• What: Computational intensity is the ratio of
arithmetic to memory operations
– FLOPS/(Loads + Stores)

• Why: Memory transactions are very expensive in
comparison to FLOPs, low computational
intensity means that the ALUs are waiting for
data

• Interpretation: Higher is better
– Poor: < 0.5 FLOPs/reference
– So-so: ~1.0 FLOPs/reference
– Good: > 1.0 FLOPs/reference

29

Derived Metrics: Cache Hit Ratios

• What: The ratio of hits to misses for a given cache
level.
– Cache Hits/Cache Misses

• Why: Cache accesses are significantly faster than
memory accesses, ideally once a cache line is loaded it
will be reused.

• Interpretation: Higher is better
– Poor: < 90%
– So-so: 90% - 95%
– Good: >95%
– Different levels of cache may have slightly different

thresholds, but these are rough guidelines.

30

Derived Metrics: FLOP Rates

• What: Ratio of floating point operations to time.
– Rate: FLOPs/time
– Percentage: (FLOPs/time) / (Peak FLOP/s)
– Caution: Every processor family reports flops differently. Is a 128b,

packed multiply 1 FLOP, 2 64-bit FLOPs, or 4 32-bit FLOPs?

• Why: Measures how efficiently the code uses the floating point
units

• Interpretation:
– While there is value in measuring % of peak, many people put too

much emphasis in obtaining a very high % of peak.
– In reality time to solution or a domain-specific rate (ie. Simulated

years/day, Particles/second, etc.) is a better metric.
– If you do measure flop rates, 10-20% is typically quite good.

• Few codes get very high % of peak
• Most codes run happily below 10%

31

Derived Metrics: Vectorization

• What: Ratio of vector/packed floating point
operation to scalar/unpacked operations

– This is can be tricky to measure, due to differences in
the way CPUs report FLOPs.

– Example: (FLOPs when compiled with vectorization) /
(FLOPs when compiled without vectorization)

• Why: All mainstream CPUs are moving to longer
vectors (SSE -> AVX -> ??)

• Interpretation: Higher is better.

32

Other Derived Metrics

• Depending on architecture, other metrics that
may be of interest

– Balance of Adds to Multiplies

– % FMA instructions

– TLB Utilization

33

